

Platypus - Multiobjective Optimization in Python

Platypus is a framework for evolutionary computing in Python with a focus on
multiobjective evolutionary algorithms (MOEAs). It differs from existing
optimization libraries, including PyGMO, Inspyred, DEAP, and Scipy, by
providing optimization algorithms and analysis tools for multiobjective
optimization.

	Getting Started
	Installing Platypus

	A Simple Example

	Defining Unconstrained Problems

	Defining Constrained Problems

	Experimenter
	Basic Use

	Parallelization

	Comparing Algorithms Visually

Getting Started

Installing Platypus

To install the latest version of Platypus, run the following commands.

pip install -U build setuptools
git clone https://github.com/Project-Platypus/Platypus.git
cd Platypus
python -m build

A Simple Example

As an initial example, we will solve the well-known two objective DTLZ2 problem
using the NSGA-II algorithm:

from platypus import NSGAII, DTLZ2

define the problem definition
problem = DTLZ2()

instantiate the optimization algorithm
algorithm = NSGAII(problem)

optimize the problem using 10,000 function evaluations
algorithm.run(10000)

display the results
for solution in algorithm.result:
 print(solution.objectives)

The output shows on each line the objectives for a Pareto optimal solution:

[1.00289403128, 6.63772921439e-05]
[0.000320076737668, 1.00499316652]
[1.00289403128, 6.63772921439e-05]
[0.705383878891, 0.712701387377]
[0.961083112366, 0.285860932437]
[0.729124908607, 0.688608373855]
...

If matplotlib is available, we can also plot the results. Note that
matplotlib must be installed separately. Running the following code

from platypus import NSGAII, DTLZ2

define the problem definition
problem = DTLZ2()

instantiate the optimization algorithm
algorithm = NSGAII(problem)

optimize the problem using 10,000 function evaluations
algorithm.run(10000)

plot the results using matplotlib
import matplotlib.pyplot as plt

plt.scatter([s.objectives[0] for s in algorithm.result],
 [s.objectives[1] for s in algorithm.result])
plt.xlim([0, 1.1])
plt.ylim([0, 1.1])
plt.xlabel("$f_1(x)$")
plt.ylabel("$f_2(x)$")
plt.show()

produce a plot similar to:

[image: Pareto front for the DTLZ2 problem]
Note that we did not need to specify many settings when constructing NSGA-II.
For any options not specified by the user, Platypus supplies the appropriate
settings using best practices. In this example, Platypus inspected the
problem definition to determine that the DTLZ2 problem consists of real-valued
decision variables and selected the Simulated Binary Crossover (SBX) and
Polynomial Mutation (PM) operators. One can easily switch to using different
operators, such as Parent-Centric Crossover (PCX):

from platypus.algorithms import NSGAII
from platypus.problems import DTLZ2
from platypus.operators import PCX

problem = DTLZ2()

algorithm = NSGAII(problem, variator = PCX())
algorithm.run(10000)

Defining Unconstrained Problems

There are several ways to define problems in Platypus, but all revolve around
the Problem class. For unconstrained problems, the problem is defined
by a function that accepts a single argument, a list of decision variables,
and returns a list of objective values. For example, the bi-objective,
Schaffer problem, defined by

[image: \text{minimize } (x^2, (x-2)^2) \text{ for } x \in [-10, 10]]

can be programmed as follows:

from platypus import NSGAII, Problem, Real

def schaffer(x):
 return [x[0]**2, (x[0]-2)**2]

problem = Problem(1, 2)
problem.types[:] = Real(-10, 10)
problem.function = schaffer

algorithm = NSGAII(problem)
algorithm.run(10000)

When creating the Problem class, we provide two arguments: the number
if decision variables, 1, and the number of objectives, 2. Next, we
specify the types of the decision variables. In this case, we use a real-valued
variable bounded between -10 and 10. Finally, we define the function for
evaluating the problem.

Tip: The notation problem.types[:] is a shorthand way to assign all
decision variables to the same type. This is using Python’s slice notation.
You can also assign the type of a single decision variable, such as
problem.types[0], or any subset, such as problem.types[1:].

An equivalent but more reusable way to define this problem is extending the
Problem class. The types are defined in the __init__ method, and the
actual evaluation is performed in the evaluate method.

from platypus import NSGAII, Problem, Real

class Schaffer(Problem):

 def __init__(self):
 super().__init__(1, 2)
 self.types[:] = Real(-10, 10)

 def evaluate(self, solution):
 x = solution.variables[:]
 solution.objectives[:] = [x[0]**2, (x[0]-2)**2]

algorithm = NSGAII(Schaffer())
algorithm.run(10000)

Defining Constrained Problems

Constrained problems are defined similarly, but must provide two additional
pieces of information. First, they must compute the constraint value (or values
if the problem defines more than one constraint). Second, they must specify
when constraint is feasible and infeasible. To demonstrate this, we will use
the Belegundu problem, defined by:

[image: \text{minimize } (-2x+y, 2x+y) \text{ subject to } y-x \leq 1 \text{ and } x+y \leq 7]

This problem has two inequality constraints. We first simplify the constraints
by moving the constant to the left of the inequality. The resulting formulation
is:

[image: \text{minimize } (-2x+y, 2x+y) \text{ subject to } y-x-1 \leq 0 \text{ and } x+y-7 \leq 0]

Then, we program this problem within Platypus as follows:

from platypus import NSGAII, Problem, Real

def belegundu(vars):
 x = vars[0]
 y = vars[1]
 return [-2*x + y, 2*x + y], [-x + y - 1, x + y - 7]

problem = Problem(2, 2, 2)
problem.types[:] = [Real(0, 5), Real(0, 3)]
problem.constraints[:] = "<=0"
problem.function = belegundu

algorithm = NSGAII(problem)
algorithm.run(10000)

First, we call Problem(2, 2, 2) to create a problem with two decision
variables, two objectives, and two constraints, respectively. Next, we set the
decision variable types and the constraint feasibility criteria. The constraint
feasibility criteria is specified as the string "<=0", meaning a
solution is feasible if the constraint values are less than or equal to zero.
Platypus is flexible in how constraints are defined, and can include inequality
and equality constraints such as ">=0", "==0", or "!=5". Finally,
we set the evaluation function. Note how the belegundu function returns
a tuple (two lists) for the objectives and constraints.

The final population could contain infeasible and dominated solutions if the
number of function evaluations was insufficient (e.g. algorithm.Run(100)).
In this case we would need to filter out the infeasible solutions:

feasible_solutions = [s for s in algorithm.result if s.feasible]

We could also get only the non-dominated solutions:

nondominated_solutions = nondominated(algorithm.result)

Alternatively, we can develop a reusable class for this problem by extending
the Problem class. Like before, we move the type and constraint
declarations to the __init__ method and assign the solution’s
constraints attribute in the evaluate method.

from platypus import NSGAII, Problem, Real

class Belegundu(Problem):

 def __init__(self):
 super().__init__(2, 2, 2)
 self.types[:] = [Real(0, 5), Real(0, 3)]
 self.constraints[:] = "<=0"

 def evaluate(self, solution):
 x = solution.variables[0]
 y = solution.variables[1]
 solution.objectives[:] = [-2*x + y, 2*x + y]
 solution.constraints[:] = [-x + y - 1, x + y - 7]

algorithm = NSGAII(Belegundu())
algorithm.run(10000)

In these examples, we have assumed that the objectives are being minimized.
Platypus is flexible and allows the optimization direction to be changed per
objective by setting the directions attribute. For example:

problem.directions[:] = Problem.MAXIMIZE

Experimenter

There are several common scenarios encountered when experimenting with MOEAs:

	Testing a new algorithm against many test problems

	Comparing the performance of many algorithms across one or more problems

	Testing the effects of different parameters

Platypus provides the experimenter module with convenient routines for
performing these kinds of experiments. Furthermore, the experimenter methods
all support parallelization.

Basic Use

Suppose we want to compare NSGA-II and NSGA-III on the DTLZ2 problem. In
general, you will want to run each algorithm several times on the problem
with different random number generator seeds. Instead of having to write
many for loops to run each algorithm for every seed, we can use the
experiment function. The experiment function accepts a list of algorithms,
a list of problems, and several other arguments that configure the experiment,
such as the number of seeds and number of function evaluations. It then
evaluates every algorithm against every problem and returns the data in a
JSON-like dictionary.

Afterwards, we can use the calculate function to calculate one or more
performance indicators for the results. The result is another JSON-like
dictionary storing the numeric indicator values. We finish by pretty printing
the results using display.

from platypus import NSGAII, NSGAIII, DTLZ2, Hypervolume, experiment, calculate, display

if __name__ == "__main__":
 algorithms = [NSGAII, (NSGAIII, {"divisions_outer":12})]
 problems = [DTLZ2(3)]

 # run the experiment
 results = experiment(algorithms, problems, nfe=10000, seeds=10)

 # calculate the hypervolume indicator
 hyp = Hypervolume(minimum=[0, 0, 0], maximum=[1, 1, 1])
 hyp_result = calculate(results, hyp)
 display(hyp_result, ndigits=3)

The output of which appears similar to:

NSGAII
 DTLZ2
 Hypervolume : [0.361, 0.369, 0.372, 0.376, 0.376, 0.388, 0.378, 0.371, 0.363, 0.364]
NSGAIII
 DTLZ2
 Hypervolume : [0.407, 0.41, 0.407, 0.405, 0.405, 0.398, 0.404, 0.406, 0.408, 0.401]

Once this data is collected, we can then use statistical tests to determine if
there is any statistical difference between the results. In this case, we
may want to use the Mann-Whitney U test from scipy.stats.mannwhitneyu.

Note how we listed the algorithms: [NSGAII, (NSGAIII, {"divisions_outer":12})].
Normally you just need to provide the algorithm type, but if you want to
customize the algorithm, you can also provide optional arguments. To do so,
you need to pass a tuple with the values (type, dict), where dict is a
dictionary containing the arguments. If you want to test the same algorithm
with different parameters, pass in a three-element tuple containing
(type, dict, name). The name element provides a custom name for the
algorithm that will appear in the output. For example, we could use
(NSGAIII, {"divisions_outer":24}, "NSGAIII_24"). The names must be unique.

Parallelization

One of the major advantages to using the experimenter is that it supports
parallelization. In Python, there are several standards for running parallel
jobs, such as the map function. Platypus abstracts these different standards
using the Evaluator class. The default evaluator is the MapEvaluator,
but parallel versions such as MultiprocessingEvaluator for Python 2 and
ProcessPoolEvaluator for Python 3.

When using these evaluators, one must also follow any requirements of the
underlying library. For example, MultiprocessingEvaluator uses the
multiprocessing module available on Python 2, which requires the users to
invoke freeze_support() first.

from platypus import *

if __name__ == "__main__":
 algorithms = [NSGAII, (NSGAIII, {"divisions_outer":12})]
 problems = [DTLZ2(3)]

 with ProcessPoolEvaluator(4) as evaluator:
 results = experiment(algorithms, problems, nfe=10000, evaluator=evaluator)

 hyp = Hypervolume(minimum=[0, 0, 0], maximum=[1, 1, 1])
 hyp_result = calculate(results, hyp, evaluator=evaluator)
 display(hyp_result, ndigits=3)

Comparing Algorithms Visually

Extending the previous examples, we can perform a full comparison of all
supported algorithms on the DTLZ2 problem and display the results visually.
Note that several algorithms, such as NSGA-III, CMAES, OMOPSO, and EpsMOEA,
require additional parameters.

from platypus import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

if __name__ == '__main__':
 # setup the experiment
 problem = DTLZ2(3)

 algorithms = [NSGAII,
 (NSGAIII, {"divisions_outer":12}),
 (CMAES, {"epsilons":[0.05]}),
 GDE3,
 IBEA,
 (MOEAD, {"weight_generator":normal_boundary_weights, "divisions_outer":12}),
 (OMOPSO, {"epsilons":[0.05]}),
 SMPSO,
 SPEA2,
 (EpsMOEA, {"epsilons":[0.05]})]

 # run the experiment using Python 3's concurrent futures for parallel evaluation
 with ProcessPoolEvaluator() as evaluator:
 results = experiment(algorithms, problem, seeds=1, nfe=10000, evaluator=evaluator)

 # display the results
 fig = plt.figure()

 for i, algorithm in enumerate(results.keys()):
 result = results[algorithm]["DTLZ2"][0]

 ax = fig.add_subplot(2, 5, i+1, projection='3d')
 ax.scatter([s.objectives[0] for s in result],
 [s.objectives[1] for s in result],
 [s.objectives[2] for s in result])
 ax.set_title(algorithm)
 ax.set_xlim([0, 1.1])
 ax.set_ylim([0, 1.1])
 ax.set_zlim([0, 1.1])
 ax.view_init(elev=30.0, azim=15.0)
 ax.locator_params(nbins=4)

 plt.show()

Running this script produces the figure below:

[image: Comparing the Pareto fronts for different algorithms on DTLZ2]

Index

Algorithms

NSGA-II

NSGA-III

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/math/60685278653b81b6e125bcee8e4bb2ce471b9b28.png
imize (z°, (x —2)°) for = € [—10, 10]

_images/math/88ac861ca30092e81fe9c4b97f3324b0ad498d6f.png
minimize (—2r +y.2r +y) subject toy —r—1<0and z+y—7<0

_images/figure_1.png
foz)

Lopeesseosmme g,

0.8

0.6

0.4

0.2

0.0 0.2

0.4 0.6
filz)

0.8 1

_images/figure_2.png
NSGAII NSGAIIl
£88s

_images/math/c7d21c0339e3d17254ac4680d0ccb42360166690.png
minimize (—2r +y.2r +y) subject toy—r <land rz+y <7

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Platypus - Multiobjective Optimization in Python

 		
 Getting Started

 		
 Installing Platypus

 		
 A Simple Example

 		
 Defining Unconstrained Problems

 		
 Defining Constrained Problems

 		
 Experimenter

 		
 Basic Use

 		
 Parallelization

 		
 Comparing Algorithms Visually

_static/up.png

_static/up-pressed.png

